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J.  Phys. A: Math. Gen. 22 (1989) 4499-4518. Printed in  the U K  

Algebraic recurrence formulae for matrix elements between the 
solutions of the transformed Jacobi eigenequation 

N Bessis and  G Bessis 
Laboratoire de Physique des Lasers, Universiti Paris-Nord, Av J-B Clement, 
93430 Villetaneuse, France 

Received 27 June 1988 

Abstract. The algebraic recursive determination of matrix elements of some selected families 
of functions Q , ( x )  between the solutions \y;"( x )  of factorisable equations is reinvestigated. 
The possibilities of the procedure outlined in a previous paper are enlarged by using 
the connection between factorisation types, i.e. the different possible factorisations of the 
same differential equation. The computation of matrix elements between the Jacobi 
eigenfunctions u ly(x)  = [ s i n ( a x / 2 ) ] n " ' 2 [ c o s ( a x / 2 ) ] P " ' 2 P ~ ~ ~ P ' ( c o s  a x ) ,  where a is a 
real or pure imaginary constant, is studied in detail. Algebraic recurrence formulae 
satisfied by matrix elements of Q , ( x )  = [~os(ax/2) ]~[s in(ax /2) ] '~[ tan(ax/2) ] ' ,  Q,(x)  = 
[sin(a~~]~[tan(ax/2)]"[cos ax]', Q , ( x )  = \ y \ ( x )  and Q, (x)  =\yII:"(x) are given, and, for the 
particular cases Q , ( x )  = [tan(ax/2)]'  and Q I ( x )  = (cos ax)',  closed-form expressions are 
obtained. As an illustrative application, it is briefly shown how the expressions can serve 
to derive analytical approximations of the bound-state energies for the potential V ( x )  = 
A exp(-x.') - / ( I +  l)/x.'. Some further applications are pointed out. 

1. Introduction 

In a recent paper (Bessis and  Bessis 1987, hereafter referred to as I), it has been shown 
how, when considering the different ladder relations satisfied both by the solutions 
V\ur"(x) of factorisable equations and by the naturally adapted set of Q t ( x )  functions, 
one obtains algebraic formulae which enable an easy recursive computation of the 
( j '  m ' i Q t ( x ) l j  m )  matrix elements. In  many cases, one has to calculate matrix elements 
of different Q ( x )  operators which either can be directly regarded as belonging to a set 
of Q t ( x )  operators or, alternatively, can be expanded on such a basis (Q,(x)). Such 
recurrence formulae may enable the determination of closed-form expressions for 
matrix elements of any Q , ( x )  as soon as those corresponding to some particular values 
of t are known. Particularly, closed-form expressions for the 'curved' hydrogenic 
pseudoradial integrals, which are needed when studying space curvature effects in 
atomic structure calculations, have been obtained without having to perform any 
quadrature. 

As already pointed out in I, this algebraic procedure relies on the well known 
property that solutions of factorisable equations are also solutions of an  equivalent 
couple of first-order difference-differential equations. It is valid for the six Infeld-Hull 
types of factorisation, denoted types A to F (Infeld and  Hull 1951). In fact, these 
factorisation types are interrelated, i.e. by an  adequate transformation of variable and  
function one  can obtain an  alternative factorisable equation corresponding to the same 
problem. Consequently the six factorisation types can be ultimately reduced to two 
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fundamental types which, for convenience, can be denoted as 'trigonometric' types 
(types A and E )  and as 'radial' types (types B, C, D and F). In this respect, the 
transformed Jacobi eigenequation, i.e. the type-A factorisable equation, can be regarded 
as the fundamental eigenequation for the trigonometric types and is of particular 
interest in computational physics: let us recall that, for instance, the associated spherical 
harmonics Y y ,  the symmetric top functions or Wigner functions D(ML,)K, and more 
generally the Gauss hypergeometric functions, are simply related to the type-A eigen- 
functions. 

In  the present paper, the algebraic recursive procedure is applied to the determina- 
tion of type-A matrix elements. After a necessary and brief review of the factorisation 
scheme, it is shown how one can take advantage of the interconnection between types 
of factorisation to enlarge the range of applicability of our method (§  2). Two different 
factorisations of the transformed Jacobi eigenequation are investigated and suitable 
sets of functions Q,(x) corresponding to each of these factorisations are proposed. 
Adequate families of Q,(x) functions, which can be used as an expansion basis for 
most Q ( x )  of some interest are 

Q, ( x ) = [cos( ax/ 2 )Ip [ sin ( ax/ 2 )]  [ tan( ax/ 2)]' 

Q,(x) = [sin(a~)]~~tan(ax/2)]~[cos ax]' 

Q,(x) =*;(XI 

or 

Q' (X)  = *Y(x) 

where p and q are real arbitrary constants and, according to the boundary conditions 
of the physical problem under consideration, a is a real or a pure imaginary constant. 
The recurrence formulae satisfied by matrix elements of these Q,(x) functions are 
given and, for the particular cases Q,(x)  = [tan(ax/2)]'  and Q,(x)  =(cos ax)', closed- 
form expressions are obtained (§  3 and § 4). The above results, which are quite useful 
for computing integrals occurring in several quantum problems, may also be of interest 
for an analytical approximate treatment of non-factorisable eigenequations. As an 
illustrative example, it is briefly shown how, within the first-order perturbation scheme, 
fair analytical approximations to the bound-state energies for the potential V(x) = 
A exp(-x2) - I([+ l ) / x 2  can be expressed in terms of the particular expressions ( a  = 1 
and s =:) of the ( j m l  [tan(ax/2)]'ljm) and ( j m l [ c o s ( a ~ / 2 ) ] - ~ ~ [ t a n ( a x / 2 ) ] ' ~ j m )  
matrix elements. Further possible applications are also considered in 0 5 .  

2. The algebraic recursive procedure 

After separating the variables, many model problems lead to the resolution of Sturm- 
Liouville differential equations which, by an adequate transformation of variable and 
function, can be always reduce to the standard form 

(d2/dx2+ V(x, m)+A,)q?=O (1) 

with the associated boundary conditions (xl  s x s x2) 

*?(XI) = *?(x2) = 0 1; l*y(x)12 dx  = 1 

and where m is assumed to take successive discrete values labelling the eigenfunctions: 
m = m,, mo+ 1, mo+2,.  . . . 
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Let us assume that equation (1) is factorisable, i.e. that it can be replaced by each 
of the following two differential equations: 

H L H , T V , " = ( A , - L ( m ) ) '  'TV,"(.y) 
(3) 

where L ( m )  does not depend on x and HZl = K ( x ,  m ) r d / d x  are ladder operators; 
K ( x ,  m )  and L ( m )  are respectivelj the ladder and  factorisation functions. 

As stated by SchrGdinger (1940, 1941) and Infeld and Hull (1951), the eigenfunctions 
q y ( x )  are then solutions of the following pair of first-order difference-differential 
equations: 

H , , , H ~ , + , Y : ' = ( A , - L ( m t l j j '  'YT(x j  

( K (x, m ) + d / d x  IT; = ( A !  - L( m 1 ) '  'Y 
( K ( x ,  m j - d / d x j T ;  ' = ( h , - L ( m j ) l  '"7. (4) 

The ladder operators H z ,  generate the eigenfunctions, step by step, downward or 
upward, and  allow the determination of any eigenfunction Y y ( x )  from the knowledge 
of any one of them and, particularly, from the knowledge of the 'key' eigenfunction 
V;(x), which is solution of a first-order differential equation. 

As has been shown in I, one can derive from the couple of first-order difference- 
differential equations (4) algebraic recursive formulae allowing the computation of 
matrix elements (1' m'iQ,(x) l j  m )  between the YV,"(x)  functions, provided that both 
the derivative dQ, /dx  and the product K ( x ,  m ) Q , ( x )  can be written as a short finite 
expansion on the basis of the Q 1 ( x )  functions. Of course, these conditions, to be 
fulfilled by the Q,(x) functions, restrict the range of applicability of the recursive 
procedure. It is therefore interesting to examine how the interrelation between factori- 
sation types can be used so as to enlarge the field of matrix elements ( j '  m'lQ,(x) l j  m) 
obeying algebraic recurrence relations. 

Let us consider the following transformation of variable and  function: 

x = U ( X j  T ( x )  = C ( f ( x ) ) '  2@(,y) = C ( F ( X ) ) '  " ( X I  ( 5 )  
where C = C ( j ,  m j is a normalisation conversion factor which is chosen in order to 
preserve the normalisation of the Yy(.x) functions 

Let us assume that the change of the variable and  function and the weight function 
F ( x )  are chosen so that the factorisable equation ( 1 )  is transformed into another 
factorisable equation in the standard form 

(d'/dX2+ V ( X ,  M)SAJ)@.J"(X) = O .  ( 7 )  
Hence, the @y(,y) eigenfunctions are solutions of the difference-differential 

equations 

( K ( x ,  M)+d/dX)@.J"(X)=(AJ - L ( M ) ) '  2 @ . J " - ' ( ~ )  
( K ( x ,  M j  -d/dX)@,M-'(X) = ( A ,  - L ( M ) ) ' " @ Y ( X )  

(8) 

where K ( x ,  M )  and L ( M )  are the ladder and factorisation functions associated with 
the factorisable equation ( 7 ) .  

These equations (8) can be written again in terms of x and of the V(x )  functions 
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where Y l  and Y2 correspond to and ay-' ,  respectively; K , ( x )  = K,(x,J, m )  and 
K 2  = K2(x, j ,  m )  may depend on both quantum numbers j and m, and A I ,  A2 do not 
depend on x. 

At this level, one can use quite the same considerations as in 5 3 of I .  Combining 
together (9) for Y l  and Y 2  with their companions for Y {  and Y;, solutions of (9) with 
K { ,  K ; ,  ,I{ and .I;, one can write 

f ( x )  d ( Y  i Y l ) / d ~ = - ( K i  + KI)YIv'l  + A l Y ~ Y 2 + A ~ Y ; Y l  

f( X )  d(v'  kv '2) /d~  = ( K2 + K i)Yiv'> - 

f ( x  j d ( Y { Y 2 ) / d ~  = (K2- K {)'€'{Y2 - il*'€'{Yl+ 

f ( x )  d('€';YIr,)/dx=-(Kl- K;)q~v'I+~1Iv' ;v '*- ' l ;Y{v'I  

;'PI - 21;'4'{'€'2 
(10) 

where the shortened notation K :  = K,(x,j ' ,  m ' ) ,  A ;  = j l , ( j ' m ' )  is used. 
When left-multiplying both sides of (10) by a sufficiently regular and differentiable 

function Q ( x )  on the interval (x ,  , x2), integrating by parts and taking into account the 
vanishing conditions (2) at the bounds, one obtains the following relations between 
matrix elements involving the Q ( x )  function, the derivative function d(fQ)/dx and 
the products K , ( x ) Q ( x )  and K,(xjQ(x):  

(V { 1 d ( fQ / dx - ( Ki + K i ) 0 I q I )  + .I I (q I I QI'J'2) + -1 I (Y ;I Q I*  1)  = 0 

d(fQ)/dx + ( K * +  K ~ ) Q I Y * ) - ~ ~ * ( Y ~ I Q I Y i )  - h;('4''1IQI'4'2) = 0 

(v' I I d ( fQ)/  dx  + ( K2 - K ; 1 0 I Y2) - I i 2 W  ; I 0 I v' 1 ) + '1 '1 (v' ;I 0 I Y2) = 0 
(9 ;I d(fQ / dx - ( K 1 - K i 1 QI Y 1 ) + A i ( 9  ;I Q I q 2 )  - 11 ;(q { I QIq I ) = 0. 

(11) 

Let us consider a suitable set of functions Qf ( x )  obeying, for instance, the following 
three-term relations: 

where i = 1,2, and let us set 

From (1 1) and (12), one easily obtains, in matrix notation, the following three-term 

+ 
c , o  0 0 
o c 2 0 0  
o o c , o  
o o o c ,  

. f , + l  

3 I +  I 

!?)l+l 

mf+l 

= 0. 
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where 

A, = ao- U ,  - U A2 = U,+ U> + U ;  A3 = ao+ ~ 2 -  U :  Ad= U,- U ,  + U ;  

B1= b0-bI-b; B2= bo+ b,+ bi B3= bo+ b2-b: B4= Bo-b,+ b; (15) 

c, = CO - c, - c: c2 = CO + C' + c; c3 = CO + C' - c: c4 = CO - c, + c; . 
Of course, when applying these relations to a given problem, one has to be careful 

in considering only Q, (x)  functions such that the products Y k ( x ) Y 5 ( x ) Q , ( x )  vanish 
at the bounds x1 and x2. An n-term expansion (12) would lead to an n-term recurrence 
relation between matrix elements (13). 

When considering the particular case U'; = Y l  , U'; = q2,  integrals (13) will be 
denoted X,, Z,, Y, and W,, and relations (14) reduce to Y, = W, and 

( U ,  - 2 ~ 1 ) X , - l +  (bo - 2b1)Xf + (CO- 2cl)Xf+I + 2Al Y, = 0 

( U, + 2 ~ 2 ) Z ,  - 1 + ( bo + 2 b2)Zf + ( CO + 2c2)Zf + 1 - 2'42 Y, = 0 (16) 

( U ,  + - U , )  Yf-l + (bo + bl- bl) Yf + (CO + C? - C I )  Y,+l - A'X, + AIZf  = 0. 

Relations (14) and  (16) are valid for all types of factorisation (A-F) and, as expected, 
when settingf(x) = 1, Y l  = Y:, Y 2  = U':-', Y I = U'?' and 9; = U'?'-', one again finds 
relations (11) and (12) of I. 

In the present paper we shall focus our attention on the determination of matrix 
elements between the Jacobi eigenfunctions, i.e. the general type-A matrix elements. 

3. Type-A factorisation of the transformed Jacobi eigenequation 

The transformed Jacobi eigenfunctions are solutions of the differential equation 

{d2/dx2 - a ' [m(  m + 1) + d 2 + 2 d ( m  +:) cos ax]/sin2 a x +  A,}W:(x) = 0. (17 )  

This equation is a type-A factorisable equation with associated ladder function 

(18) 

One has to distinguish two classes of factorisation (class I or class 11) according 
to whether L ( m )  is an  increasing function of m ( a  is a real constant) or L ( m )  is a 
decreasing function of m ( a  is a pure imaginary constant). 

The necessary condition for the existence of a quadratically integrable solution of 
equation (17), i.e. the quantisation condition, is 

K ( x ,  m )  and factorisation function L ( m )  (Infeld and Hull 1951) 

K (x, m )  = am cot ax + ad/s in  ax L ( m )  = a'm'. 

E ( j - m ) =  U (19) 
where U is a positive integer and  E = 1 (or E = -1) for class I (o r  class 11) problems. 

The associated eigenvalues are 

A, = L ( j + ~ / 2 + f ) .  (20) 

U' ,"(XI = 4m [sin( ax/ 2 )]  + "'[cos ( ax/ 2 ) I  ' + I" (21) 

c u = s ( m + d + $ )  p = E ( m - d + $ ) .  (22) 

Closed-form expressions of the eigenfunctions are known (Hadinger er al 1974) 

'(cos ax 1 
where Njm is a normalisation constant, P\,"*')( ) is a Jacobi polynomial of degree U and 
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Since equation (17) is factorisable, the 9 ' ,"(x) eigenfunctions are solutions of 
the first-order difference-differential equations (4), which are particular cases of the 
coupled equations (91, with f ( x )  = 1, V , ( x )  = V y ( x ) ,  q 2 ( x )  =V',"- '(X), K , ( x )  
= K2(x) = K(x,  m) and .I, = A , =  ( A ,  - L(m))"2 and recurrence formulae for matrix 
elements of selected families of functions can be derived. 

3.1. Recurrence formulae for the ('j m/g,(x) [tan(ax/2)]'/j m) matrix elements 

In order to apply the algebraic recursive procedure, one has to consider suitable sets 
of functions Qt(x)  obeying relations (12), i.e. such that both the derivative dQ,/dx 
and the product K(x, m)Qt(x)  can be written as finite expansions on the basis of the 
Q,(x)  functions. Moreover, it is easily verified that, if Q:(x) is a suitable set, the set 
of functions Qt(x)  = g, (x)Q:(x)  is also a suitable set, provided that dg, /g ,  = k,(x) dx, 
where k,(x)  has the same x dependence as the ladder function K(x, m ) .  

Noting that the ladder function (18) can be written again K(x,  m ) =  
[ a ( m + d )  cot(ax/2)]/2-[a(m - d )  tan(ax/2)]/2, a suitable set is found to be 

Q J x )  = gl(x)[tan(ax/2)1'  g l ( x )  = [co~(ax/2)]~[sin(ax/2)]~ (23) 

where p and q are arbitrary (not necessarily integer) real constants. 
Indeed, one gets the following two-term expansions: 

d Qt / dx  = [ a  ( 4 + t 1 Qt - i ( x )  - a ( P - t 1 Qt+ i (x) l /2  
(24) 

K(x, m)Qt(x)  = [ a ( m  +d)Q,- , (x)  - a ( m  -d)Qf+,(x)1/2.  

Let us set 

X,(p,  q )  = ( jmIg,(x)( tan ax/2) ' l j  m )  

Zt(p, q ) = ( j m - I l g , ( x ) ( t a n  ax/2) ' l jm-1)  

Y,(p ,  q )  = ( j m  - l lgl (x)( tan ax/2) ' l jm).  

From (24) it follows that matrix elements (25) obey relations (16) with 

a, = a ( q  + t ) / 2  

b,  = b, = 0 

bo = 0 c, = -a  ( p - t ) / 2  a ,  = a2 = a ( m + d)/2 

c, = cr = - a ( m  - d ) / 2  

and one gets the following recurrence formulae: 

( t  + q  -2m -2d )Xt..,( ) + ( t  - p + 2 m  -2d)X,+, (  )+4A Y,( ) = 0 

( t +  q +2m + 2 d ) Z f + , (  ) + ( t  - p  -2m -2d)Zt+,(  ) -4A Yt(  ) = 0 (26) 

( t + 4 )  Yt-l( 1 + (1 - P) Yf+I( 1 - 2-i(X,( ) - zt ( 1)  = 0 

where ,I = a-'(A, - L(m))1'2 = (j+ ~ / 2 + 4 +  m)1 '2( j+  e/2+4-  m)",. 
Note that the class dependence of the recurrence relations is entirely contained, 

through the binary class parameter E ( e  = 1 or e = -1 for class I or class I1 problems), 
in the expression of .I. 

As a particular case, when setting p = q  in the expressions (26), one obtains 
recurrence formulae for the determination of the ( j  ml(sin a ~ ) ~ [ t a n (  ax/2)]'I j m) matrix 
elements. 
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The above choice (23) of Q,(x)  is not unique. For instance, the eigenfunctions 
q ; ( x )  themselves, and more generally, the g l ( x ) Y  : (x)  functions, can also be considered 
as suitable Q,(x) functions. Indeed, from (4) and (18), one easily obtains the following 
three-term expansions: 

d'Pi/dx = [ ( t  ++).\,(?)'€'-' - 2 ~ d ' P i  - (  t - i ) . \ , ( t  t l) 'P;+ ' ] / (2t  t 1) 
(27) 

K(x,  m)'Pi(x) = [ ml1,( t )Yi- '  - 2ad (m + i)'P; t "I,( t + l) 'P;+']/(2r + 1) 

where A,( r )  = a( j +  e / 2 + f  t t ) ' ' 2 (  j t ~ / 2 + 4 -  t ) " 2 .  
When dealing with problems leading to type-A (or perturbed type-A) eigenfunc- 

tions, an adequate expansion basis for the Q(x)  operators is known to be Q , ( x ) =  
[tan(ax/2)]'. I t  is thus interesting to apply our method to the determination of 
closed-form expressions of matrix elements involving these functions. 

3.2. Closed-jorm expressions f o r  the (j m/[tan(ax/2)]'/j m) matrix elements 

Let us set 

X, = ( J  ml[tan( ax/2)]'l j m) 

Z, = ( j  m - I / [  tan( ax/2)]'1 j m - I)  

Y, = ( j  m - 1l[tan(ax/2)]'ij  m). 

(28) 

Using relations (26) for the particular case p = q = 0, one gets the following relations 
between matrix elements (28): 

( t /2 - m - d 1 X, - + ( I /  2 + m - d )X,+ , + 2.1 Y, = 0 

( t / 2 +  m t d)Z,-, t ( t / 2 -  m + d)Z,+ ,  -2.1 Y, = 0 

r (Y , - '+  Y,,,)/2-.1(X,-Z,)=O. 

(29) 

Substituting for Y,-, and Y,+' from the first equation (29) into the third equation yields 

( m - d + t / 2  t ;)XI+, = (2d  - t )X, - (4  I?/ r ) (  X, - Z, ) + ( m t d - r / 2  + i ) X ,  - ? .  (30) 

This relation enables the determination of XI+, as soon as closed-form expressions 
for X, (and therefore Z,) and X,-? are known. Since the 'Py(x)  eigenfunctions are 
assumed to be normalised: X o  = Z, = 1; thus, in order to start the recursive process, 
one requires only a closed-form expression for X2. The range of the x variable being 
different for class I and class I1 problems, the two cases have to be considered separately. 
In both cases, after a few algebraic manipulations, X? can be expressed in terms of 
normalisation integrals involving Jacobi polynomial and one obtains the following 
results (see appendix 1). 

For class I problems ( a  is a real constant) 

( j  m I[tan( ax/2)]'1 j m) = - 1 + 2( j + 1 )/ ( m  - d t 4). (31) 

For class I 1  problems ( a  is a pure imaginary constant) 

( jml[ tanh( laJx /2) ] ' l jm)= 1 - 2 j / ( m - d + f ) .  (32) 
After introducing the binary class parameter E ,  one obtains the unified expressionn 

E ( j  ml[tan(ax/2)]'l j m) = -1 + 2 (  j + ~ / 2  ti)/( m - d +;). (33) 
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Now, the recurrence relation (30) can be applied to calculate matrix elements (28). 

(34) 

Substituting for (X,-Z2) and X 2  from equations (33)  and (34) in equation (30) 

Using expression (33),  one gets 

x2 - Z, = - 2 ~  ( j  + E / 2 + 4)/ ( m - d - f ). 

and since X,, = 1, one gets 

E ( j  ml[tan(ax/2)141j m )  
= 1 + 4( j + e /2  + 4)[( d - I ) / (  m - d +;)( m - d + $) 

+ A2/(m - d + $ ) ( m  - d + i ) ( m  - d -$)I. 
Then, once X2 and X4 are known, one gets 

E ( j  ml[tan(ax/2)I6ij m )  
= - 1 + 2 ( j  + ~ / 2  + f)[4( d - 1 )( d - 2 ) / (  m - d + f), 

+ 4A2(2d - 3) / (  m - d - f ) 4 +  6A4/( m - d - i), 
+ ( m  + d -$)/( m - d +;)( m - d + f ) ]  

(35)  

(36) 
where (U), = U( U + 1 )  . . . ( U  + n - 1 )  = r( U + n ) / U  U )  is the Pochhammer symbol. 

The determination of closed-form expressions for the ( j  ml[tan(ax/2)]'1 j m )  matrix 
elements can be pursued without special difficulty, up to any higher value of t ,  by 
means of relation (30). 

Note that one can also apply the following four-term recurrence relation involving 
only the X, : 

( r + 2 ) ( m  - d - r /2-4)(m - d  + t/2+$)X,,, 

= [4(r + 1)A2+ t ( m  + d + t /2+f) (m - d  + r / 2 + f )  

+ ( t+2) (m - d - t / 2  -4)(2d - t -2)]X,+2 

+[4(1+ 1)A'- t ( m  + d + t /2+f) (2d  - t )  

+ ( t + 2 ) ( m  - d - t /2-$)(m + d - t/2-4)]X, 

- t (  m + d + t / 2  +f)( m + d - t /2 + f)X,-, . (37) 
This relation can be easily obtained from (29) after a few algebraic manipulations. 

It should be mentioned that, without having to perform any integration, the above 
expressions for the E ( j  ml[tan(ax/2)]'lj m )  matrix elements have already been 
obtained, as a consequence of the expression of the first-order 'perturbed' factorisation 
function within the perturbed type-A ladder operator framework (Bessis and Bessis, 
unpublished). 

Once closed-form expressions for the diagonal ( j ' =  j, m ' =  m )  matrix elements X, 
have been obtained, the expressions of the subdiagonal ( j ' = j ,  m ' =  m - 1) matrix 
elements Y, easily follow from (29): 

(38) 
It may happen that, for convergence considerations, an extended basis set, such 

as Q,(x) = [cos( a~ /2 )1 -~" [ t an (  ax/2)]', constitutes a more convenient expansion basis 
for the operator Q(x)  under consideration and/or for the perturbed potentials. From 
(23), (26) and (16), it is easily found that matrix elements 

x,(s) = ( j  ml[cos(ax/2)]-"[tan(ax/2)]'~ j m )  

Y, = (2A)-'[(d - t/2)(X,+, + XI-,) - m ( X , + ,  - X,-,)l. 
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and Z,(s)  obey the following recurrence relation: 

( t  - 2 s ) ( 2 m  -2d -2s  + t + 1 ) X , + 2 ( s )  

= [ t ( 2 d  - t ) - 4 s ( m + d  - t - t ) ] X , ( s ) - S . 1 2 ( X , ( s )  

- Z , ( s ) ) + r ( 2 m + 2 d  - t + l ) X , - , ( s ) .  (39 )  

Now, in order to start the recursive procedure, one needs closed-form expressions 
for X o ( s )  and  X z ( s ) .  Except the trivial case when s is an  integer, the computation of 
these integrals involving s is somewhat more intricate than the computation of integral 
( 3 3 ) ;  nevertheless it can be shown that it is sufficient to evaluate X o ( s ) ,  which can be 
still obtained from standard tables (ErdClyi et a1 1954). One obtains (see appendix 1 )  

X , ( s )  = X,(s + 1 )  - Xo(s) 

x,(s)  = [ 2 ( j +  i)r(t; + s ) r ( m  - d - s + 3 ) r ( 2 j + 2 ) ] /  

[ v ! r ( m  - d + i ) r ( s ) r ( j +  m - s + 3 ) ]  (40 )  

x 4 F 3 ( - v ,  j +  m + 2 ,  m - d - s +$, 1 - s; m - d +$, 

j + m - s + 3 ,  1 - U - s ;  1 )  

where t; = E( j  - m )  and 4F3( ) is an  hypergeometric function. 
When considering only the above type-A factorisation of eigenequation (17 ) ,  the 

possible choices of adequate Q , ( x )  functions, leading to short finite expansions such 
as (24)  or (27 ) ,  remains restricted. Let us enlarge the field of matrix elements 
( j  miQ,(x)l  j m )  obeying algebraic recurrence relations by using the alternative (type-E) 
factorisation of eigenequation (17 ) .  

4. Type-E factorisation of the transformed Jacobi eigenequation 

Let us consider the hyperbolic amplitude or  Gudermannian transformation of variable 
and  function connecting type-A and  type-E factorisations and set 

tan( a x / 2 )  = exp( b,y) 

Y ( x )  = C(sin a x ) ” * @ ( x )  = C(cosh bx)-”’@(x) 

where C = C ( j ,  m )  is a normalisation conversion factor (see equation ( 6 ) ) .  

[d2/d,y2+ b’( j +  ~ / 2 ) (  j +  ~ / 2 +  l)/cosh’ bx +2b2d(  m ++) tanh b,y+ A]@(,Y) = 0 

where A = -b ’ [d*+(m+t )*] .  

factorisable equation 

(41 1 

The transformed Jacobi eigenequation (17 )  can be rewritten 

(42 )  

This last eigenequation can be identified with the standard Infeld-Hull type-E 

(43) [d’/dX2 - A 2 M ( M  + l) /sin2A(,y+xo) - 2 A Q  cot A(,y +,yo) + A , ] @ ? ( x )  = 0 

where A = i b ,  , yo= i r /2b ,  Q = - b d ( m + i ) ,  J = m + ~ / 2  and M = j + ~ / 2 .  
As a consequence, the associated quantisation condition is J - M = m - j = v, i.e. 

when q : ( x )  is a solution of a type-A, class I ( E  = 1 )  problem (or  a class I 1  ( E  = -1) 
problem), the corresponding eigenfunction @y(,y) is a solution of a type-E, class I1 
(or  class I )  problem. 



4508 N Bessis and G Bessis 

The associated ladder and factorisation functions are (Infeld and  

K ( x ,  M ) = A M  C o t A ( x + x o ) + Q / M  L(  M )  =A”’- Q’/M2. 

The associated ladder equations are 

[ A M  cot A ( x + x ~ ) + Q / M + d / d x ] @ ~ ( x ) = ( A ,  - L ( M ) ) ” * @ Y - ’ ( x )  

[ A M  cot A ( x + x o ) + Q / M  - d / d ~ ] @ y - ’ ( ~ ) = ( A ,  - L ( M ) ) ” 2 @ y ( x )  

Iull 951) 

(44) 

(45) 

where (A,  - L( M ) ) ’ ”  = ( L ( J +  E / 2 + 4 )  - L( M))’”  and E is the type-E class parameter. 
When returning to the original variable x and original eigenfunctions 

q\IT,”(x) = C ( j ,  m)(cosh bx)-”2@’/M(x) 

and 

q J ” - ’ ( x )  = C ( j -  1, m)(cosh bx)-’  ’@’/M-’(x),  

( K , ( x ,  j ,  m ) +  a-’ sin ax d /dx)q ; (x )  = A , q , - , ( x )  

(K2(x , j ,  m ) - a - ’ s i n  ax d/dx)q\I’:l,(x)=.I,q\U,”(x) 

the coupled equations (45) become 

(46) 

where, in terms of the original type-A quantum numbers j ,  and m, and of the class 
parameter e = - E  

K , ( x , j ,  m ) = - ( j + & / 2 + i ) c o s a ~ - d ( m + i ) / ( j + e / 2 )  

K , ( x , j ,  m ) = - ( j + e / 2 - i ) c o s a x - d ( m + i ) / ( j + s / 2 )  

.I, = b- ’ (AJ  - L ( M ) ) ’ ” C ( j ,  m ) / ( C ( j -  1, m )  

.Iz= b - ’ ( A , - L ( M ) ) ’  ’C(j-1, m ) / C ( j ,  m ) .  

(47) 

A closed-form expression for the normalisation conversion factor C ( j ,  m )  can be 
obtained from ladder operator considerations (see appendix 2 )  and one gets 

’41 = ( j + & / 2 + f ) A  .I?= ( j + e / 2 - i ) A  

A = ( j +  e / 2 ) - ’ [ ( j +  ~ / 2 -  m - $ ) ( j +  & / 2 +  m + i ) ( j +  ~ / 2 -  d )  (48) 
x ( j +  e / 2 +  d ) ] l ” [ ( j +  e / 2  - i ) ( j +  & / 2 + i ) ] - ” ’ .  

Now, let us  determine recurrence relations associated with the couple (46) of 
first-order difference-differential equations. 

4.1. Recurrence formulae for  the { j  m/g,(x)(cos a x ) ‘ / j  m) matrix elements. 

It is easily seen that suitable sets of O t ( x )  functions must satisfy relations (12) with 
the expressions (47) of K , ( x )  = K , ( x , j ,  m ) ,  K z ( x )  = K , ( x ,  j ,  m )  and f ( x )  = a-’ sin ax. 

One particularly interesting set is found to be o : ( x )  = (cos a x ) ‘  or, more generally, 

O ’ ( X )  = g2(x)(cos ax)‘  g 2 ( x )  = (sin ax)”(tan a ~ / 2 ) ~  (49) 

where p and q are arbitrary (not necessarily integer) real constants. 
Indeed, one gets the following three-term expansions: 

d (  a-‘ sin axO,) /dx  = - tof-’ + qOt + ( p + t + 1 )  Or+’ 
K , ( x ) O , ( x ) =  - b d ( m + ; ) ( j + & / 2 ) - ’ Q t  - b ( j + ~ / 2 + 4 ) 0 ~ + ~  
K, (  x )  o , ( x )  = - bd(  m + f)(j  + e / 2 ) - ’ Q t  - b(  j + & / 2  - f )of+,  . 



Algebraic formulae ,for matrix elements 4509 

Let us set 

F , ( p ,  q )  = ( j  - 1 m)g2(x)(cos ax ) ' l j  m). 

As a consequence of expansions ( 5 0 ) ,  matrix elements (51) obey relations (16) with 

a,= - t  bo= q c o = p + t + l  a ,  =a,=O 

b,  = b2 = -d (m + i ) / ( j +  ~ / 2 )  

c, = -( j + ~ / 2  + t )  c2 = -( j +  ~ / 2  -$) 

and one gets 

td,- I ( - [ q + 2d ( m + f I /  ( j  + E /  2112, ( 1 
- (2j + e + p + t + 2)X,+,( ) - 2'1, F,( ) = o 

tz,-,( ) - [ q - 2 ~ ( m + ~ ) / ( j + & / 2 ) ] 2 , (  

tF,-,( )-qF,( ) - ( p + t + 2 ) F , + , (  )-.2,2,( )+&d,( ) = O  

+ ( 2 j  + E - p - t - 2 ) 2, + I ( ) + 2 ' 1 ~  F, ( ) = o ( 5 2 )  

where '1, and 'I2 are given by (48). 

elements. 
Let us now consider the determination of closed-form expressions for matrix 

4.2. Closed-form expressions for ( j  m/(cos ax) ' / j  m) matrix elements 

Closed-form expressions for the ( j  ml(cos ax) ' /  j m) matrix elements can be obtained 
without having to perform any integration. Indeed, let us set 

d, =(jmI(cos ax ) ' l jm)  

2, = ( j  - 1 ml(cos ax)'l j - 1, m) 

F, = ( j  - 1, m/(cos ax) '(  j m):  

( 5 3 )  

For the particular case p = q = 0, relations ( 5 2 )  reduce to 

td,-, - [2d(  m + ;)/( j + & / 2 ) ] X f  - (2 j  + E + t + 2)Zf,, - 2'4, F, = o 
r2,- , + [ 2 d  ( m + f)/ ( j  + ~ / 2 ) ] . ? ,  + ( 2 j  + E - t - 2 ) 2 , +  , + 2A2 F, = 0 

t F, - , - ( t + 2 )  F, + , - '2 , 2, + .I 2 x, = 0. 

(54) 

Since the eigenfunctions u',"(x) are orthonormalised, the particular values x, = 2, = 
1 and To = 0 are known. Setting t = 0 in the first and last equation (54), one gets the 
expressions of 2, and PI,  i.e. 

( j  mlcos axl j  m )  = -d (m + +)/ ( j  + ~ / 2 ) (  j + ~ / 2  + 1 ) 

( j  - 1 mlcos axlj, m )  = -A/2 
(55) 

where A is given by (48). 
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Then, setting t = 1 in equation (54) and using ( 5 5 ) ,  one gets the expressions for f f2  
and p2, i.e. 

( j  ml(cos axl21 j m )  

= [ 1 + 2 d 2 (  m +f)’/( j + ~ / 2 ) ~ (  j + e / 2  + 1) 

+ ( j  + ~ / 2  + ;)A2]/(2j + E + 3) 

( j -  1 m/(cos ax)’/ j m )  = d ( m  + + ) A / (  j +  e / 2  - 1)( j +  e / 2 +  1). 

The determination of closed-form expressions for X ,  and Y, can be pursued without 
any special difficulty, up to any higher value of t. 

Note that, since the Wigner functions D‘,“,’,.( cp, x, &) are simply related to the (class 
I )  q r ( x )  functions (see appendix 3), the expressions ( 5 5 )  (for e = 1, j = L - i m  = M -+, 
and d = M ’ )  again give the expansion coefficients of the product (cos x)D(ML,’,.(4, x, 9) 
in terms of the Dg,h,(4, x, 9). 

One can also obtain recurrence formulae ( 1 6 )  allowing the determination of the 
off-diagonal ( j - 2  ml(cos a x ) ’ l j m )  matrix elements or, more generally of the ( j -  
k ml(cos a x ) ’ l j  m) ,  in terms of the diagonal elements. Indeed, it can be shown that 
q y 2 ( x )  and q y ( x )  are solutions of coupled equations (9) and that the associated 
ladder conditions ( 1 2 )  are still satisfied by (cos ax)‘. Applying equation (9) twice, 
wheref(x), K , ( j ) =  K , ( x , j ,  m ) ,  K , ( j ) =  K 2 ( x , j ,  m ) , A , = h , ( j ) a n d i l , = h , ( j ) a r e g i v e n  
by ( 4 7 )  and (48), one gets 

( K ,  ( j  - 1 )  +f d/dx)(  K ,  ( j )  +f d / d x ) q y (  x )  = ‘1, ( j ) A l (  j - l ) q p 2  
( 5 7 )  

Keeping in mind that q F ( x )  is solution of the second-order differential equation 
( 1 7 ) ,  one can write 

(f2 d2/dx2)qJ” = [ -( j + e / 2  +f)’sin2 ax + m( m + 1 )  + d Z +  2 d (  m ++) cos ax]Yy (58) 

and, consequently, it is easily found that qy = q ,  and qp2 = P2 are solutions of the 
coupled equations (9) with 

f ( x )  = (po+pl  cos ax)a-’s in  ax 

K l = a o + a l  ~ ~ ~ a x + a , c o s ’ a x  

A I  = A l W A l ( j - -  1) 

a. = m ( m  + 1) + d’ - ( j  + ~ / 2  + +)( j + e / 2  + 5 )  + d 2 (  m + f)’/ ( j  + e / 2 ) (  j + ~ / 2  - 1) 

a ,  = d ( m  + 4 ) [ 2 +  ( j +  e / 2 + ; ) / (  j +  e / 2  - 1) + ( j +  ~ / 2 - + ) / ( j +  ~ / 2 ) ]  

a2 = 2( j + ~ / 2  ++)’ 

Po= -d(m + 4 ) ( 2 j +  E - l ) / ( j + e / 2 ) ( j + e / 2 -  1) 

the following four-term relations: 

d[f(x)( cos ax)‘]/dx 

(K , (  j )  -fd/dx)( K2( j - 1) - f d / d x ) q p , ( x )  = A 2 ( j  - l)A,(.j)q;. 

K z  = a&+ a :  cos a x +  a i  cos’ ax 

i12 = ,I2( j ) A 2 (  j - 1 )  

(59 )  

P I  = - ( 2 j +  e + 1). 

It is easily checked that (cos ax)‘  constitutes a suitable set of functions obeying 

=(-fpo)(cos ax) ‘ - l - ( r+ l )p l (cos  ax)‘ 

+ ( t  + 1 )po(cos ax)’+l+ ( t  + 2)p1(c0s ax)‘+’  (60) 

K,(x)(cos ax)‘ = ao(c0s ax)‘ + a,(cos ax)’+’ + a,(cos ax)‘+2 
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and a straightforward generalisation of the first equation (16) yields 

2Al( j )Al( j -  1 ) ( j - 2  mi(cos ax) ' i jm)  

= -tpoxr-l - [ ( t  + 11/31 + 2aoIX, - [ ( t  + 1 1/30 - 2 a l l x , + l  

- [ ( t+2) /3 ,  -2a*IX,+2. (61) 

In the same way, applying equations (9) k times and using (57), one can obtain 
the coupled equations satisfied by 'upk and 9: and, finally, the expression for the 
off-diagonal ( j  - k ml(cos ax) ' i j  m )  matrix elements as a linear combination of the 
diagonal elements 

As a last remark, let us add that the choice (49) of Q,(x) is not at all exhaustive. 
For instance, the 9 Y ( x )  functions themselves can be considered as Q,(x)  functions. 
Indeed, from (46), it is easily found that they satisfy the expansions relations 

= ( J  mi(cos ax)"l j  m ) .  

d(a- ' s in  a x 9 Y )  d x = A o 9 ~ - l + B o 9 ~ + C o 9 ~ + ,  (62) 

K,(x)9:  = + B , 9 ? +  C,qy+l 

where 

A " = ( t +  ~ / 2 - f ) ~ i ~ ( f ) / ( 2 t +  E + 1) 

CO= ( t +  ~ / 2 + $ ) A ~ ( t +  1 ) / ( 2 t + ~  + 1) 

Bo= - d ( m  + f ) / ( t  + ~ / 2 ) ( 2 t  + E + 1) B, = 2d(m +f)( j+ ~ / 2 * f ) / (  t +  e/2) (2 t+  E + 1). 

In the expressions for A,, B, and C,, the upper and lower signs stand for i = 1 and 
i = 2, respectively. 

A, = ( j +  ~ / 2 * f ) A , ( t ) / ( 2 t +  E + 1) 

C, = ( J +  & / 2 * f ) A 2 ( t  + 1) / (2 t+  E + 1) 

5. Illustrative applications 

If many real problems encountered in physics, or even many (sufficiently elaborated) 
model problems, do  not lead to the solution of factorisable equations, nevertheless, 
in most cases of interest, they can be conveniently described by a kernel potential 
belonging to one of the factorisable types together with an additional perturbation 
term. Maybe, not at all fortuitously, well adapted expansion bases for the perturbation 
turn out to be suitable sets of Qr(x)  functions: when dealing with type-A unperturbed 
problems, such is the case, for instance, for Q,(x)  = [tan(ax/2)]'  or Q,(x) = (cos ux)'. 

As an illustrative application, let us determine analytical approximations to the 
bound-state energies of the Schrodinger equation with a radial Gaussian potential (for 
an accurate treatment, see Buck (1977), Stephenson (1977) or Lai (1983) and references 
therein) 

( d 2 / d x 2 + A e x p ( - x 2 ) - I ( l + l ) / x 2 + E ) 9 ( x ) = 0  (63) 

with the associated boundary conditions 9 ( 0 )  =*(CO) = 0. 
As already pointed out (Bessis et a1 1982), good analytical approximations to the 

energies can be obtained by means of the traditional Rayleigh-Schrodinger method. 
Noting that the Gaussian potential exp(-x2) behaves as (cosh x)-* and the rotational 
term x - ~  resembles (sinh x ) - ~ ,  a suitable and exactly soluble unperturbed wave 
equation is 

(64) [d2/dx2+A/(cosh X ) ~ - I ( I +  l)/(sinh X ) ~ + E ' ~ ' ] ~ " ~ ' ( X )  = O .  
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Setting A = p Z - a ,  m = - ( I + p + $ ) / 2 ,  d = ( p - I - f ) / 2 ,  this equation (64) can re- 
written as 

{d2/dx2+ 4[ m( m + 1) + d’+ 2d(  m ++) cosh 2x]/(sinh 2x)‘+ E“’}VI$,) = 0. (65) 

This is a factorisable type-A (class 11) eigenequation (17) with a = 2 i ,  L ( m )  = -4”; 
the associated quantisation condition is m - j  = n = integer 2 0. In order to satisfy the 
boundary conditions, the condition p s -( n + I +  1) must hold and one has to choose 
the negative solution of p 2 - $ =  A, i.e. p = - (A+: )” ’ .  

The perturbed bound-state energies are 

E‘O’= - L ( j )  = - (2n+ I + p  + $ ) 2  (66) 

The perturbation to be considered is 

V(x) = A[exp(-x’) -(cosh x)-’] - I ( / +  l)[x-2-(sinh x)-?]. (67) 

A direct computation of matrix elements of V(x) on the basis of the eigenfunctions 
912J is not all easy to perform. Therefore, it is convenient to consider the following 
expansions: 

exp(-x2)-(coshx)-2= 1 a,(tanh x)”  
r = 2  

x - ~  - (sinh x ) - ~  =+(cosh x ) - ~ ’ ~ +  br(tanh x)” 
I =z 

where the first term in the second equation of (68) has been found by noting that 
x-2 - (sinh x)-* = f - x’/ 15 +. . . and that (cosh x ) - ~ ”  = 1 - x2/5 + . . . . 

Finally the perturbation can be rewritten as 

V(x) = / ( I +  l)(cosh x)-”’/3+ 1 [Aa, - I ( / +  l)b,](tanh x ) ~ ‘ .  (69) 
r = 2  

And, within the Rayleigh-Schrodinger framework, the first-order perturbed energy 
is 

EjAJ=-(2n + I + p  +$)’+ / ( I +  l)XO(s =3)/3+ [Aaf - / ( I +  l)bf]X,.  (70) 

Numerical values of the a, and b, expansion coefficients have already been obtained 
(Bessis et a1 1982). Hence, closed-form expressions for the bound-state energies E$J 
can be obtained in terms of the analytical expressions of the class I 1  ( E  = -1) matrix 
elements X , ( s )  (see equation (40)) and X ,  = ( j  ml[tan(ax/2)]’lj m )  where d = 
-[(A+a)”2+1+f]/2;  m = [ ( A + $ ) ’ ” - I - $ ]  a n d j = m - n .  Of course, the accuracy of 
the result depends on the truncation (in t )  of expression (70) and also on the particular 
choice of effective parameters in the expression for the unperturbed Hamiltonian (see 
Bessis et a1 1982). 

Among other possible interesting applications, let us mention that the algebraic 
recursive procedure can also be of some practical interest for an analytical perturbative 
treatment of the Schrodinger equation with the Hulthen potential V,(X) 

{ d 2 / d x 2 - I ( I + l ) / x 2 + Z p  exp(-px)/[l  -exp(px)]+ZE}9(x)=O (71) 

r = 2  

with the associated boundary conditions 9 ( 0 )  = ~ ( c c )  = 0. 
Indeed, noting that the Hulthen potential VH(x) can be rewritten as 

VH(X) = -ZP[coth(p~/2)  - 1]/2 
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and  that the rotational term x - ~  behaves as [ ( 2 / p ) ~ i n h ( p x / 2 ) ] - ~ ,  a suitable unperturbed 
eigenequation is 

[d2 /dx2-p21( l+  1 ) /4  s inh2(px/2)+2ZP coth(px/2)  - Z P + 2 E ' " ' ] 9 ' " ' = 0 .  (72) 

One easily recognises a type-E factorisable equation (43) with A = ip /2 .  
Let us add  that, in the same way, the Schrodinger equation with the exponentially 

screened static Coulombic potential VSc(x)= = -Z exp(-ax) /x  can also be regarded 
as a n  unperturbed type-E factorisable eigenequation with additional perturbations 
after noting that the Hulthen potential V,(  x )  may constitute a rather good unperturbed 
approximation to the screened potential V,,(x). 

The above examples have been given to illustrate how the algebraic recursive 
procedure would be useful for an analytic perturbative treatment of many model 
eigenequations, within the classical Rayleigh-Schrodinger scheme, and  the computa- 
tion of associated expectation values. Of course, although it is well adapted for 
computer programs which perform algebraic manipulations, such as REDUCE (Hearn 
1976) or  M A C S Y M A  (1977), for an accurate treatment of the above eigenequations, u p  
to a high order of the perturbation, the shifted 1/ N expansion method (see, for instance, 
Dutt et a1 1986 and  references therein) and/or  the perturbed ladder operator method 
(Bessis er a1 1983 and references therein) remain more attractive. 

6. Conclusion 

Finally, it has been shown how the combined use of different ladder relations satisfied 
by the 9 y ( x )  eigenfunctions and by naturally adapted sets of Q, (x)  functions provides 
recurrence formulae for calculating matrix elements between solutions of factorisable 
equations. As a consequence, closed-form expressions for the diagonal ( j '  = j ,  m' = m )  
matrix elements can be obtained from the knowledge of very few classical integrals 
which, in most cases, can be found in tables or  even without having to perform any 
integration. It is no longer necessary to consider separately the determination of class 
I or class I 1  matrix elements according to the boundary conditions of the problem: 
one obtains unified expressions containing the binary class parameter E.  It has been 
shown how the range of applicability of the procedure, i.e. the field of suitable Qf(x), 
can be enlarged by using the connection between factorisation types and, also, how 
the recursive procedure can be extended to the determination of off-diagonal matrix 
elements (in terms of the diagonal ones) by a repeated use of the ladder operators to 
the bra (or ket) 9:(x) eigenfunctions. 

Recurrence formulae (14) or (16) are valid for all factorisation types. They can be 
used, for instance, for calculating matrix elements of Qf(x) = exp[ -( p + t ) x  + qe'] 
between type-B eigenfunctions which are related to the confluent hypergeometric 
functions and, particularly, are of some interest in diatomic vibration studies within 
the perturbed Morse potential model (see, for instance, Badawi er a1 1973 and Huffaker 
and  Dwivedi 1975). In that case, the choice of suitable Q,(x) functions can be still 
enlarged by using the interconnection between type-B and type-F factorisations. Since 
most of expansion basis functions of current use in quantum physics are connected 
by simple relations either with the Gaussian or the confluent hypergeometric functions, 
the algebraic recursive procedure may constitute a useful and efficient tool for comput- 
ing expectation values and, also, for an analytic perturbative treatment of many model 
eigenequations within the classical Rayleigh-Schrodinger scheme. 
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In the present paper, we have focused our attention on the determination of matrix 
elements between the transformed Jacobi eigenfunction, and closed-form expressions 
have been obtained for matrix elements of Q,(x) = [tan(ax/2)]'  and Q,(x)  = (cos ax) ' .  
Of course, alternative expressions for matrix elements between the transformed Jacobi 
eigenfunctions are obtainable (Bessis et a1 
of the eigenfunctions after expanding the 
basis of the PP*"(y)  

L 

t' ( y )  P ( ~ . P ! ( ~ )  = C Ct)p)p,hj 
k = O  

where y = cos(ax) and (see Miller 1968) 

1982) by using the orthonormality property 
Jacobi polynomials Pl"-"(y) on the finite 

cp)= + p +  U +  k +  l ) r ( a + b + k +  l)r(CY + U +  l ) / ( ~ - k ) ! r b  + p  + V +  1) 

x r( a + b + 2k + l)r( CY + k + l ) ]  

x,F,(k- U, CY + p  + V +  k +  1, u + 1; a + k +  1, a + b + 2 k + 2 ;  1). 

The use of this expansion in a term-wise integration leads to closed-form expressions 
involving hardly reducible summations (with upper bound U = E (  j - m ) )  which may 
conceal a simpler analytical dependence in the quantum numbers j and m (see equations 
(33)-(36) or (55) and (56)) and, from a computational point of view, the use of the 
algebraic recursive procedure is, by far, more advantageous. 

Appendix 1.  Calculation of particular type-A matrix elements 

A l . l .  Class I X 2  = (j mi [tan(ax/2)]'lj m) matrix elements 

Setting cos a x = y  and noting that [ t a n ( u x / 2 ) ] ' = ( 1 - y ) / ( l + y ) = - 1 + 2 / ( 1 + y ) ,  one 
can write 

( l - y ) a ( l + y ) P - ' l p l a , P ' ( y ) ( 2 d y  

( A l . l )  

Closed-form expressions for both integrals involved in ( A l . l )  can be obtained from 
tables in Gradshteyn and Ryzhik (1980) 

(1 -y ) " ( l  + y ) P l f ' ~ ~ . P l ( ~ ~ ) 1 2  dy 

= (2a'P'1r(CY + U +  i ) r ( p  + U +  i ) ) / ~ ! ( ~  + ~ + 2 ~ +  i)r(a + p  + U +  1) 

(A1.2) 
and 

(1 - y ) " ( l  + y ) P - 1 j P ~ + P ' ( y ) 1 2  dy I:, 
= ( 2 a + P r ( a  + U +  i ) r (p  + U +  i ) ) / ~ ! p r ( ~  + p  + U +  1). 

Hence, one obtains 

x, = -1 + ( a  + p + 2 u +  I) /@. 

(A1.3) 

(A1.4) 
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Using the expressions (22) and (19) for a, p, and U, one gets the class I expression 
(43) of x 2 .  

A1.2. Class I1 X ,  = (j ml[tanh(lalx/2)I2/j m) matrix elements 

Setting z = coshlalx and noting that [tanh(lalx/2)I2 = 1 - 2 / ( z +  l ) ,  one can write 

X 2  = 1 - 2 ( z - 1 ) ( z + 1 )'- ' I  P?,' I (  z)I2 dz 

( z - l ) " ( z + 1 ) P l p ~ , P ) ( z ) 1 2 d z  . (A1.5) 

The expression of the normalisation integral in (A1.5) has already been obtained 

I: 
) - I  

in a previous paper (Bessis et a1 1982) and can be rewritten as I: ( z -  l ) " ( z +  l ) ' ~ P ~ ~ ' 1 ( z ) ~ 2  dz 

= [ 2 u + P r ( a  + U +  i ) r ( p + u +  I ) ]  sin p ~ / [ u ! p ( a  + p + 2 ~ +  1) 

x I '(a + p  + U +  1) sin(a + p ) . n ] .  (A1.6) 

Let us remark that, for both classes, the expressions of the other integral in (A1.5) 
can be expressed in terms of a normalisation integral involving the P',",'-"(z) Jacobi 
polynomial. Indeed, one can use the following relation (see, for instance, Miller 1968): 

(A1.7) 

where 
wpl - - ( - I ) " - ~ ( ~  + p  + ~ k ) r ( ~  + p + k y y a  + ~ + i ) / r ( ~ + p +  U +  i)rya + k +  1) 

and, owing to the orthogonality property of the Jacobi eigenfunctions, one gets, for 
class I and class I1 respectively, 

(1 - ~ ) " ( ~ + Y ) ' - ' J P ~ P ~ ~ ' ( ~ ) J ~  dy I:' 
(A1.8) 

(A1.9) 

Hence, using comparatively the expressions (A1.2) and (A1.6), one finally obtains 

= ( a  + p  +2U+ 1 ) / (2P)  (A1.lO) 
and, consequently, for class I1 matrix elements (see equation (A1.5)) 

x2 = -( a + 2u + l ) / p  ( A l . l l )  
or, after using the class I1 ( E  = -1) expressions (22) for a, p and U, one gets the class 
I1 expression (32) for X 2 .  
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A1.3. Class I and class I1 ( j  m l [ ~ o s ( a x / 2 ) ] - ~ ' / j  m) matrix elements 

For class I problems, closed-form expressions for X o ( s )  and of X 2 ( s )  can be derived 
from tables in Erdilyi (1954). Indeed, after setting y = cos ax, one can write 

[cos(~x/2)]-"[tan(ax/2)]~ = -[2/(1 +y)] '+[2/(1 +y)] '+ ' .  

Thus, X,( s)  = -Xo( s j + Xo( s + 1) and it is sufficient to evaluate Xo( s),  i.e. 

X O ( s ) = 2 '  (1 -y)"(l+y)P-slpl"'P'(y)j2dJ.'  S', 
(A1.12) 

The computation of the above (class I) integral involving s is somewhat more intricate 
than the computation of integral (A1.3); nevertheless it can be still obtained from 
tables in Erdilyi (1954) 

x , ( ~ )  = [ ( a  + p  + 2 u +  i ) r ( s +  ~ ) r ( ~  - - s +  i ) r ( a  + p  + U +  i ) / ~ !  

r(a +~)r(~)r(~ + p  -s+ u+2)1 

X ' J J - U ,  a + p  + U +  1, a - s +  1, - s +  1; 

a + 1 , a + p - s + u + 2 ,  - s - u + 1 ;  1). (A l .  13) 

For class I1 ( E  = -1) problems, the same considerations as for the X , ( s  = 0) matrix 
elements lead to the closed-form expression for any X , ( s )  matrix element from the 
knowledge of its class I counterpart (substitute ( j + l )  with j and change the sign 
overall); after introducing the class parameter E ,  one gets the expression (40) for Xo(s),  
which is valid for both classes. 

Appendix 2. Determination of the normalisation conversion factor 

The normalsiation conversion factor C = C ( j ,  m )  is defined, in terms of a diagonal 
type-E matrix element, by the following relation (see equations (6) and  (41)): 

b u - ' C 2 ( J M l ( a  cosh bX).-'IJM)= 1 (A2.1) 

or, in the standard type-E notation 

-(ab)- 'C2(JMIA2/sin2A(X + x o ) l J M )  = 1. (A2.2) 

For class I and a = 1, this matrix element have been obtained in closed form in a 
previous paper (Bessis et al 1984). It is worthwhile to present here a unified and  
consistent technique for deriving a unified expression of this matrix element from 
ladder operator considerations. 

Let us consider the following alternative expressions of A cot A(x + ,yo) as proper 
combinations of the type-E ladder operators 4; = A M  cot A ( x + x o j +  Q / M  -d/dx, 
i.e. 

A cot A ( x + x o )  = Q/ M Z +  (@"M +@& j / 2 M  

= Q / ( M -  I)'+(@)+M-l+Q&-1)/2(M- 1 j. (A2.3) 
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Using the ladder equations (45) together with the mutual adjointness property of 6L 
and 61 operators, one can write alternative expressions for a same matrix element 
involving any differentiable function G(x)  

( J M  - l /G(X)A cot A(x  + x o ) / J M  - 1) 

= ( Q / M 2 ) ( J M  - l / G I J M  - 1) - ( 1 / 2 M ) ( J M  - 11 d G / d x I J M -  1) 

+ (A, ( M )/ M ) ( J  M - 1 1 GI J M )  

= ( Q / (  M - 1)’)(JM - llGlJM - 1) 

+[ 1/2(M - 1 ) ] ( J M  - l l d G / d x / J M -  1) 

(A2.4) + [ A , ( M  - 1)/(M - l)](JM -21GIJM - 1). 

First, setting G ( x )  = 1 in (A2.4), one gets 

( J M - l ( A c o t  A(x+xo) (JM- l )  

= ( Q / M 2 )  + [ A j ( M ) / M ] ( J M -  1IJM) 

= ( Q / ( M  - 1)2)  + (A,( M - 1)/( M - l ) ) ( J  M - 2 / J  M - 1). (A2.5) 

Therefore, this matrix element must be independent of M and, since A,(J + E/2+4) = 0, 
after setting M = J +  E/2+f in (A2.5), one gets 

( J M I A  Cot A ( x + x o ) l J M ) =  Q / ( J + d / 2 + f ) ’  (A2.6) 

where d = - E  is the type-E class parameter. 
Setting in (A2.4) 

G ( x )  = A  cot A ( x + , y o ) ,  G ( x ) A  cot A(x+xXo) = -A2+A2/sin2 A ( x + x o )  

and using (A2.6), one gets, after some rearrangements 

( M  - i ) ( J  M - 1 (A2/sin2 A(x + x 0 ) ( J  M - 1) 

= A2M + [ Q 2 / M ( J  + E/2 +$)’I + A,( M ) ( J M  - 1/A cot A(x + x o ) I J M )  

= A’( M - 1) + [ Q 2 / (  A4 - l)(J+ E/2+$)’] 

+ A, ( M  - 1)(J M - 21A cot A(x + x o ) / J  M - 1). (A2.7) 
Using the same arguments as above, one gets 

( M  +4)(JMIA2/sin2 A(,y +,yo)(JM)  = A2(J  + d/2 + 4) + Q 2 / ( J  + ~ / 2  + 4 ) 3  (A2.8) 

and, in terms of the original type-A quantum numbers j ,  m and class parameter E = -E ,  
one obtains 

(A2.9) C2( j ,  m )  = ab-’( j + E +$)( m +;)/[( m + 4 ) 2  - d2]. 

Appendix 3. Some particular type-A eigenfunctions 

A3.1. Associated spherical harmonics 

yF(e, 4)  = ( 2 ~ ) - ” ’  exp(iMp)(sin e)-’I2vL,,,,(e). 
*F(e) is a class I ( E  = 1) solution of eigenequation (17) with x = 8, Os 6s T; a = 1; 
d = 0; j = L - f  ; m = M - f  and L -  M = j - m =positive integer or zero. 
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A3.2. Symmetric top functions 
D‘L’ 

M.K(a,  P, Y )  =exp(iMa)dLtk(p)  exp(iKy) 

where a, p, y are the three Euler angles: 0 s a s 27r; 0 5  p s 7r ;  0 s y s 27r, 

d\ ik(p)  = [ 2 / ( 2 1 +  1)]”2(sin / 3 ) -”2VLM(p)  

with VL,(p) being a class I ( E  = 1) solution of eigenequation (17) with x = p ;  a = 1; 
j = L -;. Since both differences L - M and L - K are positive integers or zero, V L M ( p )  
is a type-A eigenfunction either when setting M = m + f and K = d, or when setting 
M = d  a n d K = m + $ .  

A3.3. Gauss hypergeometric functions 

The differential equation satisfied by the Gauss hypergometric function * F , ( a ,  p ;  y ;  z )  
is (Gradshteyn and Ryzhik 1980) 

{ Z (  1 - z)d2/dz2 + [ y - ( C Y  + p + 1 )z]  d/dz - a/3}F( Z )  = 0. 

Setting z = sin’x and F = (sin x ) - ~ ~ ” ’ ( c o s  x)-”’+’-~’~ q ( x ) ,  one obtains 

[d2/dx2 -4( m 2 +  d2 -:+ 2md cos 2x)/sin22x + ( a  - p)2]V(x)  = 0 

where m = ( a  + p  - 1)/2 and d = ( 2 y - a  - p  - 1 ) / 2 .  
V ( x )  is a class I ( E  = 1) solution of eigenequation (17) with a = 2, A, = ( a  - p ) ’ .  

On the other hand, the quantisation condition requires j - m = U = positive integer and 
A , = L ( j + l ) = L ( m + ~ + 1 ) = 4 ( u + ( a + p ) / 2 ) ~ .  As a consequence, either a = - U  or 
p = -U, i.e. one finds again the well known condition for finite hypergeometric series. 
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